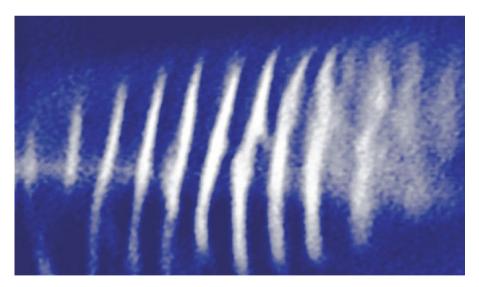
Лекция 5. Элементная база ЭВМ

Информация?

Из Лекции №1:


Информация (от informatio - осведомление, разъяснение, изложение) - абстрактное понятие, имеющее множество значений, зависящих от контекста. В узком смысле этого термина - сведения (сообщения, данные) независимо от формы их представления. Общего определения термина информация нет. С точки зрения разных областей знания он описывается своими специфическими наборами признаков. Достаточно часто этот термин можно трактовать, как совокупность данных, зафиксированных на каком-то носителе, сохраненных и передаваемых.

«Информация» в разговорном языке означает передаваемые сведения, знания, нечто осмысленное и как-то полезное получателю. Informare с латыни — «научать».

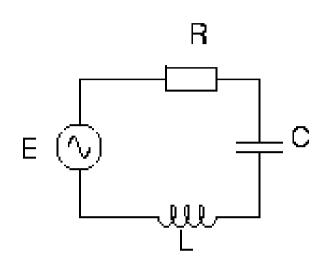
ИНФОРМАЦИЯ - это явление, которое характеризуется наличием источника, приемника, канала связи и т.д.

Аналоговое представление информации

Акустические волны. Микрофон

$$U(t)=k(P(t)-P_0)$$

U(t) – электрическое напряжение


P(t) – давление воздуха

Р_о – среднее давление воздуха

К – коэффициент преобразования

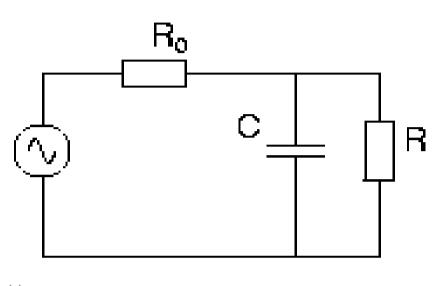
U(t) и P(t) - непрерывные во времени функции

Электрический сигнал

Энергия заряженного конденсатора:

Энергия катушки индуктивности:

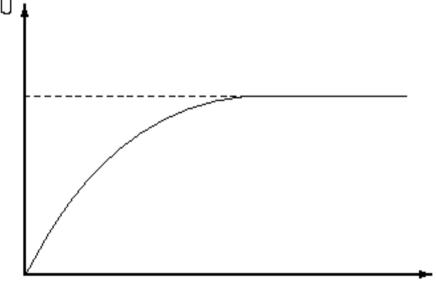
Закон Кирхгофа

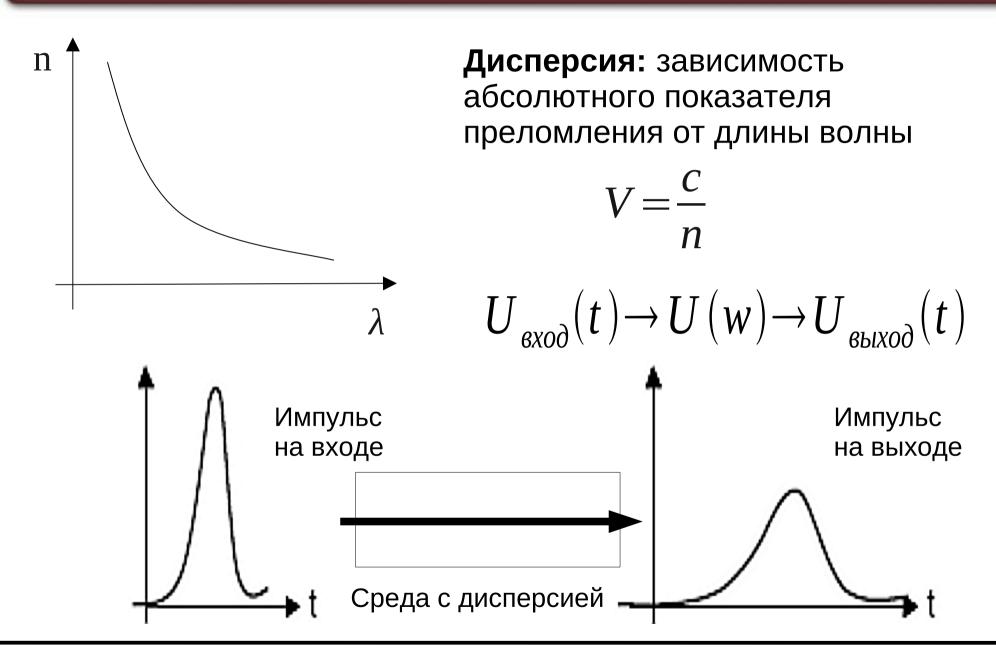

$$E(t) = R \cdot I + L \cdot \left(\frac{dI}{dt}\right) + \frac{1}{C} \int Idt$$

$$W_C = \frac{C \cdot U^2}{2}$$

$$W_L = \frac{L \cdot I^2}{2}$$

энергоемкие и инерционные параметры


Влияние емкости


$$U_{C\infty} = U_0 \frac{R}{(R_0 + R)}$$

$$U_{C\infty} = U_{0} \frac{R}{(R_{0} + R)}$$

$$U_{C}(t) = U_{0} \frac{R}{(R_{0} + R)} \cdot (1 - e^{-(\frac{t}{(\tau)})}), \tau \sim RC$$

Оптический сигнал. Дисперсия

Аналоговые вычислительные машины

Закон Кирхгофа

$$E(t) = R \cdot I + L \cdot \left(\frac{dI}{dt}\right) + \frac{1}{C} \int Idt$$

Операции:

интегрирования, дифференцирования, суммирование, Логические операции

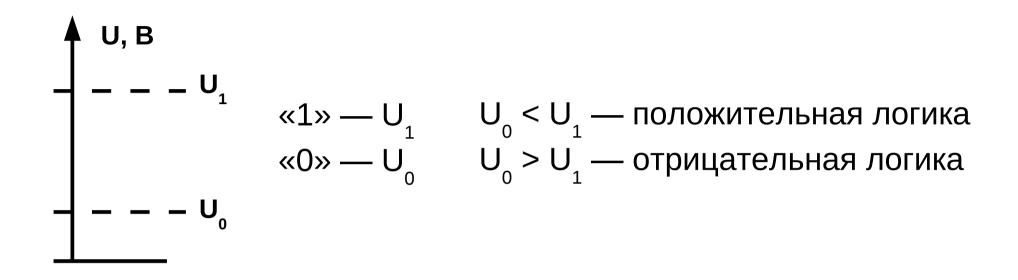
Работа в реальном времени

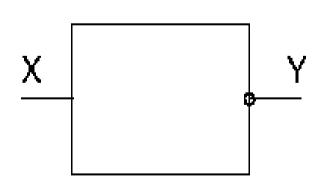
Специализированность сложность перепрограммирования

Цифра? Дискретизация. Квантование

Измерение - фиксируем время измерения, берем некий эталон и начинаем сравнивать величину с этим эталоном.

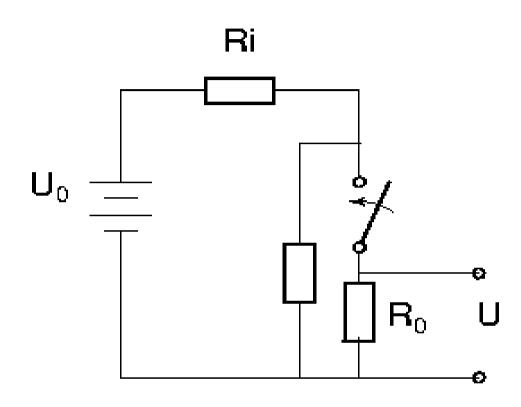
$$U = a_0 + a_1 \cdot b + a_2 \cdot b^2 + ... + a_n \cdot b^n$$


b – основание системы счисления


а_, — коэффициенты, изменяющиеся в диапазоне [0, b — 1]. .

Аналоговый сигнал	Цифровой сигнал
Определен в любой	Неизменен на
момент времени	определенном интервале
Искажается при передаче	Передается без искажения

Физическое представление информации



Инвертор

Перевод из одной логики в другую

X	Υ
1	0
0	1

Простейший коммутирующий элемент

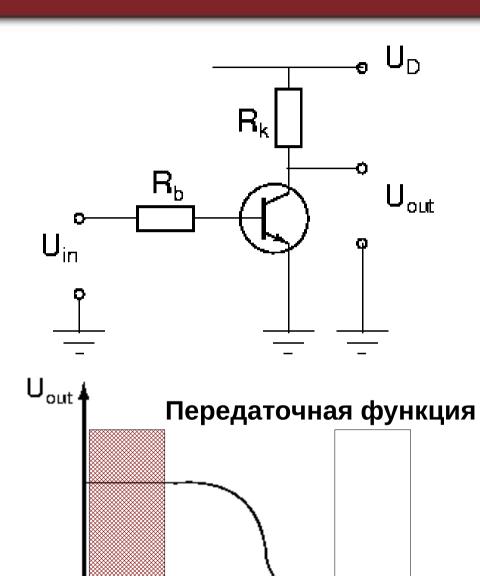
Частота: 5,3 Гц

Скорость: сложение - 0,8 сек

умножение - 3 сек

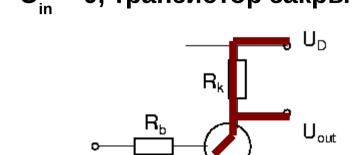
Потребление энергии: 4 кВт

Масса: 1000 кг

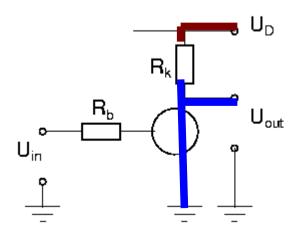

Ключ разомкнут: U=0

Ключ замкнут: $U = U_0 \frac{R_0}{(R_i + R_0)}$

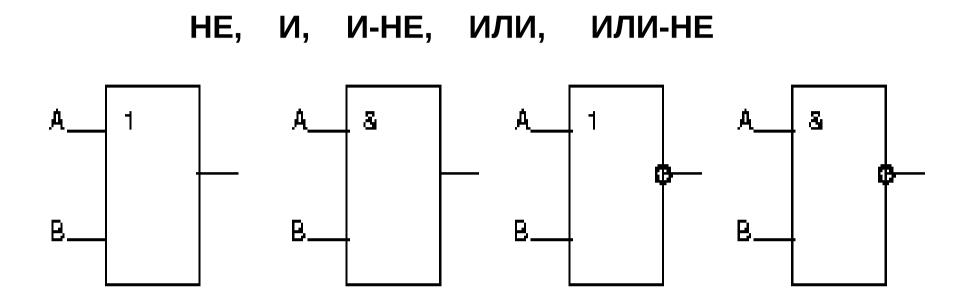
Реле из Z3 (Германия,1941)



Транзисторный ключ



0.6


Эквивалентные схемы U_{in} = 0, транзистор закрыт

U_{in} >>0.6в, транзистор открыт

Основные логические элементы

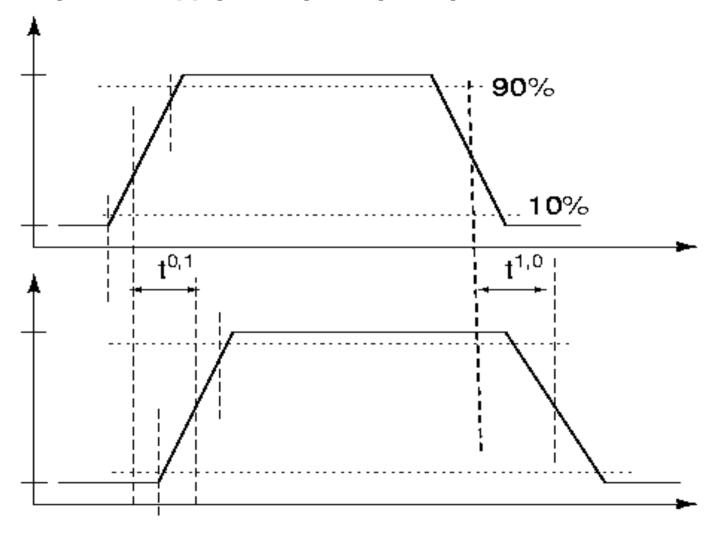
Α	В	или	И	или-не	И-НЕ
0	0	0	0	1	1
0	1	1	0	0	1
1	0	1	0	0	1
1	1	1	1	0	0

Основные характеристики логических схем

Средняя статическая потребляемая мощность

$$P_{cmam. cp.} = \frac{1}{2} (P^0 + P^1)$$

Динамическая потребляемая мощность


$$A_{cp} \sim E^2 \cdot C_{H}$$

$$P_{\it duh.\,cp} = A_{\it cp} \cdot \nu$$
 $A_{\it cp}$ – работа переключения, ν – частота переключений

$$A_{cp} \sim E^2 \cdot a^2 \longrightarrow P_{\partial uh.cp} \sim E^2 \cdot a^2 \cdot v$$

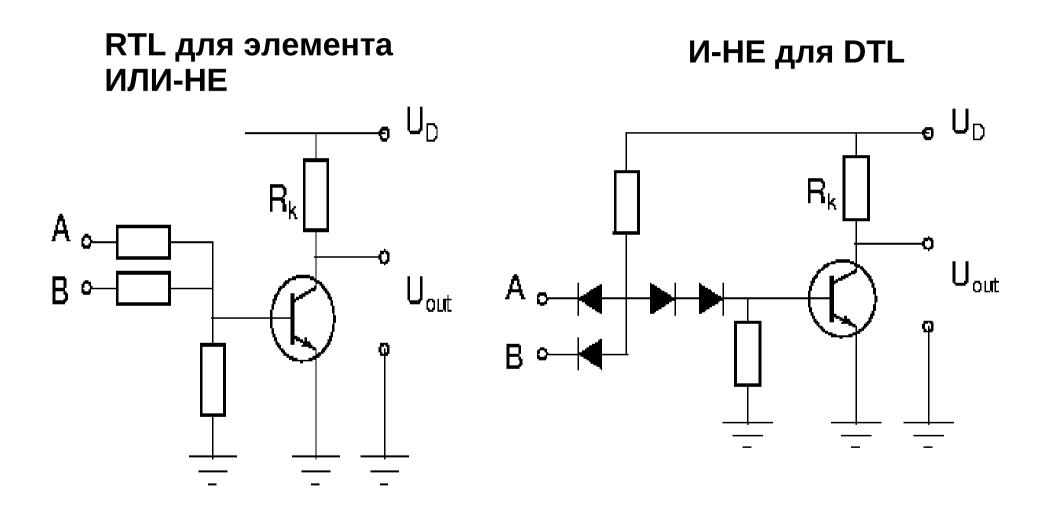
Основные характеристики логических схем

Среднее время задержки распространения сигнала

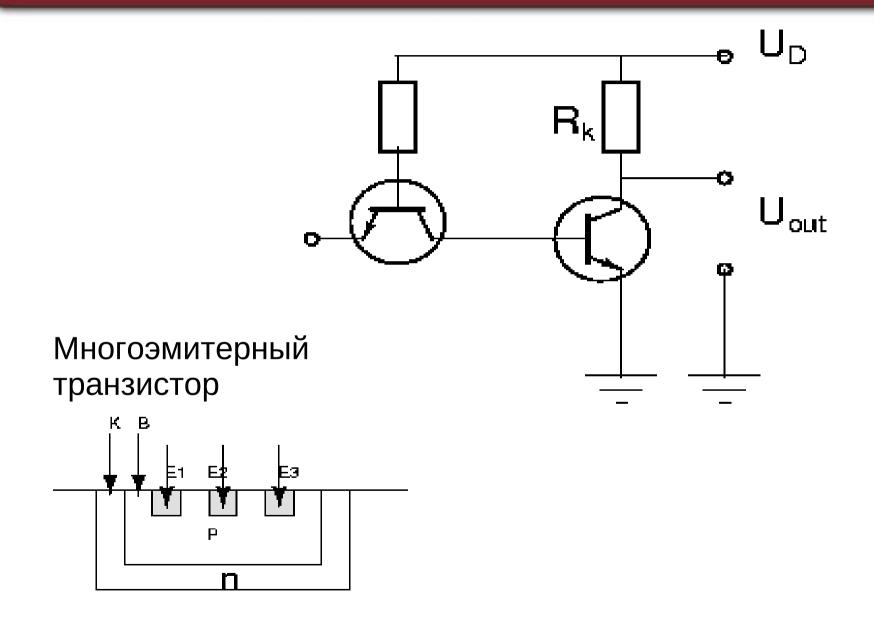
Основные характеристики логических схем

Коэффициент разветвления по выходу - К

Допустимое число нагрузок, подключаемых к выходу элемента (подключаются входы аналогичных элементов).


Статическая помехоустойчивость – U п.ст

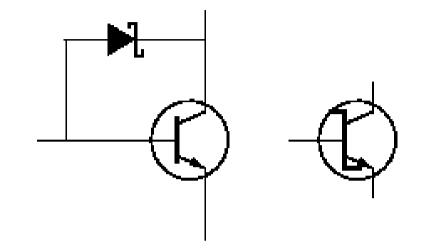
Максимально допустимое напряжение статической помехи. (статическая помеха – время ее действия >> времени переключения элемента)


Таблица параметров логически схем

Тип логики	Р _{ст. ср.,} мВт	t _{зд.ср.,} нс	А _{ср,} пДж	К, шт	U п.ст., В
ТТЛ					
ТТЛШ					
ЭСЛ					
МОП					
КМОП					
БиКМОП					
МЕП					

Предшественники TTL

Логика TTL. Схема инвертора


Характеристики TTL

Тип логики	Р _{ст.} ср., мВт	t _{3Д.ср.,} нс	А _{ср,} пДж	К, шт	U п.ст. В
ТТЛ	1 - 20	5 - 20	50 - 100	10	0,8 - 1
ТТЛШ					
ЭСЛ					
МОП					
кмоп					
БиКМОП					
МЕП					

TTL с диодами Шоттки

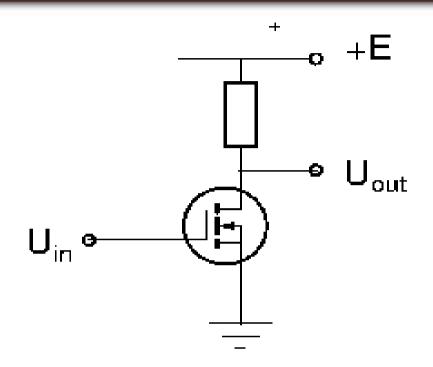
Диод Шоттки:

- работа на основных носителях;
- отсутствие обратного тока;
- быстрый переход из прямого в обратное состояние;

Тип логики	Р _{ст. ср.,} мВт	t _{3Д.ср.,} нс	А _{ср,} пДж	К, шт	U п.ст. В
ТТЛ	1 - 20	5 - 20	50 - 100	10	0,8 - 1
ТТЛШ	1 – 20	2 - 10	10 - 50	10	0,5 - 0,8

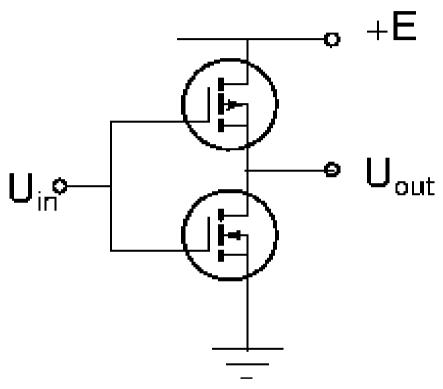
Эмиторно-связанная логика

Транзисторы работают в линейном режиме — высокое быстродействие


Уровни «1» и «0» слабо различаются — слабая помехоустойчивость

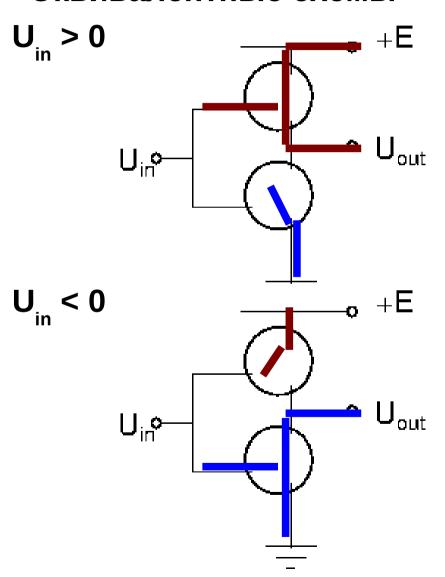
Тип логики	Р _{ст. ср.,} мВт	t _{зд.ср.,} нс	А _{ср,} пДж	К, шт	U п.ст. В
ТТЛ	1 - 20	5 - 20	50 - 100	10	0,8 - 1
ТТЛШ	1 – 20	2 - 10	10 - 50	10	0,5 - 0,8
ЭСЛ	20 - 50	0,5 - 2	20 - 50	10 - 20	0,2 - 0,3

МОП


Полевой транзистор:

- нет тока затвора просто соединять и анализировать схемы;
- логические уровни не зависят от нагрузки – последующих каналов;

Тип логики	Р _{ст. ср.,} мВт	t _{3Д.ср.,} нс	А _{ср,} пДж	К, шт	U п.ст. В
ТТЛ	1 - 20	5 - 20	50 - 100	10	0,8 - 1
МОП	1 - 10	20 -200	50 - 200	10 - 20	2 - 3


КМОП

Преимущество – низкое потребление

Недостаток – медленно

Эквивалентные схемы

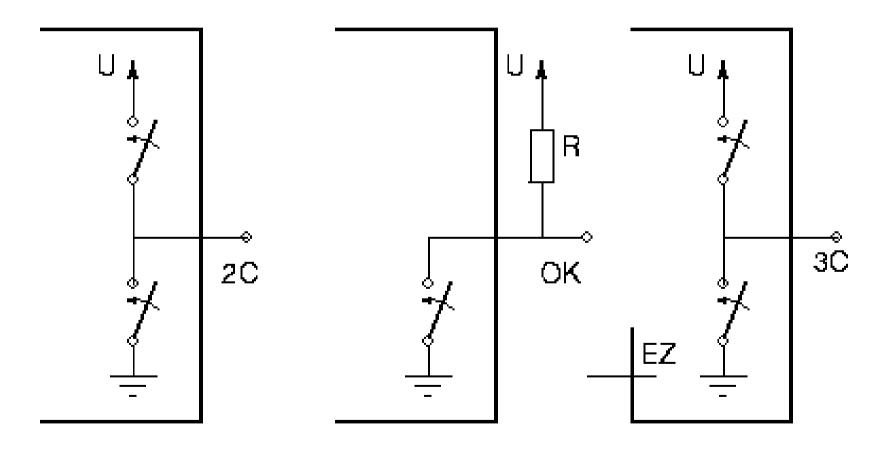
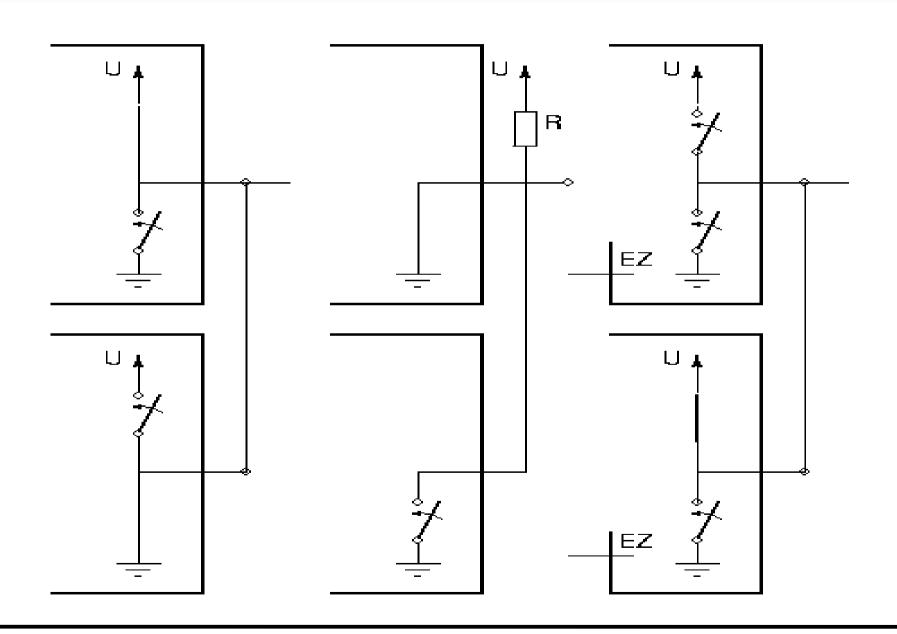


Таблица параметров логически схем


Тип логики	Р _{ст.} ср., мВт	t _{зд.ср.,} нс	А _{ср,} пДж	К, шт	U п.ст. В
ТТЛ	1 - 20	5 - 20	50 - 100	10	0,8 - 1
ТТЛШ	1 – 20	2 - 10	10 - 50	10	0,5 – 0,8
эсл	20 - 50	0,5 - 2	20 - 50	10 - 20	0,2 – 0,3
МОП	1 - 10	20 -200	50 - 200	10 - 20	2 - 3
КМОП	0,01 - 0,1	10 - 50	0,5 - 5,0	10 - 20	1 - 2
БиКМОП	0,01 - 0,1	2 – 10	2 - 20	10 - 100	1 - 2
МЕП	0,1 - 0,5	0,15 - 0,5	0,1 - 0,5	2 - 5	0,1 - 0,2

Типы выходов микросхем

- стандартный выход, два состояния (2C, 2S, TTL)
- выход с открытым коллектором (ОК, ОС)
- выход с тремя состояниями (3C, 3S) «Z-состояние»

Объединение микросхем. Шинная организация

